Att använda sig av syntetiska data är en metod som gör det möjligt att forska på stora mängder patientdata, utan att inkräkta på patienternas integritet. Syntetiska data är utformade så att de efterliknar verkliga data, men är frikopplade från verkliga individer.
Syntetiska patientresor ger forskningen nya verktyg
Kvalitetsvård Kan patientens vårddata användas inom forskningen, utan att man samtidigt inkräktar på den personliga integriteten? I en nyligen publicerad studie har forskare visat hur detta är möjligt.

Syntetiska data gör det möjligt att dela informationen om patienter, utan att känslig information läcker ut. Foto: Adobe Stock
Någonting är fel
Du är inloggad som prenumerant hos förlaget Pauser Media, men nånting är fel. På din profilsida ser du vilka av våra produkter som du har tillgång till. Skulle uppgifterna inte stämma på din profilsida – vänligen kontakta vår kundtjänst.
Kvalitetsmagasinet premium
Läs vidare – starta din prenumeration
Redan prenumerant? Logga in och läs vidare.
Det gör det möjligt att dela informationen mellan vårdgivare, akademiker och privata intressenter, utan att känslig eller personligt identifierbar information läcker ut.
Qrf9kJOac/IS2E7q+ZkNzX6hNXCSIVEwf3WAeJ+NodCSMkH+H0i97QlatxQ7bNUb1+ACIGaL/dQK4w7QJrQL1weWzir/xoB7Gc8w+hRsYsUsYJtSpQF9UNIv+uZw8aZiFdE/YRMDXtV3zzoV5JDOBspnznBDY8EaTzW0ItnqjuRwheLPWG3z2AJFscDjRAcnQY3Sl/upmwP6l+JXxItF31ZK7NTPZV+PNGz1iZWD3RrhtHy+Flairb2TxdlBHDxNJP3GAQVed2A6+5ELL/RA1qKFiLib0USKUbb4tPHU5s1C5ddi9tO/LnnN7/uFyIgbFohKWnkH2hsMWLvCE4LsZhrtGdaeUc+BeXkV+xWJ7wPkza/ZaxBqHMu7fbDfiQ1BnmepIkdPwkSa43sxo5y3NAVTJYBhyYZpuvtjWJ6M4cjn3McrlGuvpdYwWAlkWln31rtQxxNnU2WZDkqLQBvMT3+Nblhy47FaAQ4llsll13k7jLsDnnAZYK9PMFbO7iNA4rpfN9efpKDLG/9nvcGy03Sn4t59qhrn8u9qulYsvKF7IaCiMGNIqVZpMXaIRRKLrVNWc/19fMUOFVj7w7V9yYvcjv9AyF7qenY1mZOXsfkXUPGxqLX4FAdPFXQlrT3igeln0XJ3DvMICGzLmfRBtHPRhyRb+nz5KkaWTSK0JLRkAuQq7t4tj+s+/0GLPSxlTblN0fw31pwzNPnAiA/wIzvEOGb8D6yj+PVM50MU8a+ISxKx8N9QQcZDl7cpBdNvRn8xblChTZGN+37mfT8hzHr8wnz3MrAOXreqQlubfxUNHVpYe9FQ4pAM0O3cKa9SNUyFypIKd9n/ajaiE8gZxWoMJuJNSb373OSEv4jvYLkxtGlcOfx857xNLz6k0b2NZl85HCiKck5eMMZsSAHHmGlWH1PubQ6DKMNeRq8JmnPVEn1J7jqQRUgIgDPKCh3ZvkuJnXhZd0txK7YewT2jdod3pkCTcUeGDRP2k4VR5zfb1eOWAWzZux1usbj6S+PKWDyWP0ZTBmCs0Nqb/EAw8Uzrid2ghQfF1tqqMWGDV/yOEXVTQa6S6/kcOloghH1WpEVk4VPBsG1q5EMinOJTvoPJ/sd2V8SAnfHR1NZEWw5m5haLhyfANqg9ekDjXFzuVhP8WL8x0L6QhKqqZvbPur2melI/7Ex/E2ZLRTxMUKsx7G6js/AJgoT0Ty7UlDeT33amG5e2l/LPFODLGPz0UtBfEKafCKHUEKMHanaSzyBjyg1wpyAwdq7+xNZ6w23oKZR6zWjnRyCkva2a6AXhnJ80BoaVkbFfgsKzu+ciay3gFitK2r2zSaqDXctanSW0mJ1bdCBOczDrRN2tXUC6TuGx4+Ct5Sr9VlazR5WUH1Yzy7BGc4yBnCMTrWb/zoqQHuzGmD+C6Zy/S42+eqzrHNOE0lG79shOAGrKOuKe0Zq4N63EE8JKj+enyhscWINn53Hd/sG9EBri6oJjgzxHXxAR2HWdE6zQiZqoxi0gtslLbk6Zx6jBL3+pS8z4fI0lD1RlaWS4X5dy9Z21mgohrtS1IwAw4zTVff3kwic/I1VV18Qyfed2hpzBANPty9BzGIK6cujjA+3bn/H0ekiqWOaMTUKJidQqvGf9f4iHvFEx0Tdaj1nzZhFVS/0suwHmd70WVH5+CC6SuW7vKD4RrcB+6kxmnwMUgAxW4Cy39oTaIWnrwkYtCyvBe2J8tr1eqv7z1jh8nSEzbs0dAM0OEHhmKps105WMrFYgF39jRL7m3ytPGXGR2wVw+37WurYcwiYDSTDysovJ61PiMnOTM8fvoltfni/tA7knHUDH73/0UffPCommAKyhoTCZykpAjW9b0RWtGYPbmSSgtZFF3Xcud2BZeR5TFC2T9cRN+ZOO9JjXSOAInH4icfQyrzulfunw/AMQ8QMNhE+lRrla/voH9KxudLMrUnRvvrS2wsrrgEN+TdjizdGGcSwMH2HGz7Z+efGGlcHs6GTXu5YAzP3e12YNFBkALInZ94xuuBMtpYTm69tdgjbsXAXMdQ+Q+uos9iSgM5cY3+y6ROyJfyhEX1kB/BlKmJavpAylSi812E5IRqtB9sYmA7YtxicQbJvNcTgc0l02WzrQAX+HONY4z2qsrUj9hV7rCv1+bWXG/DZQqDW68WQAxGmgU2rt01qe9EdGFQ9Fa+njZQ62BP7iaIgINDyut11XLgH8KxY6ZC4gzUwPhysba0ZP5h2s70et7CuEoDMC6YdMaI11Ym1sI1dZpRdIcV/4FzUViABXgco9g1lik8TGPAoWRhAH84TmG63tszpOlbp6EEXrEW2KPtq1RkcG+urDEGqEbuGz/ZSXKeDJrKecf/TQQmYQ1dZyEvHt1wGkW/u7EyscojxzYZcfqu+WdmapHNCQwSvFillbhEdvxKNHn7f6EU9+01pri6oSdPb0czPCa8ZIztYFAVi7JUsHIm0X9h0YyDz07z+x+lfoig1X5m/5/vLkLj1ila1kPoBpc7z0dpSr0pnkmW8QOxUD6fu7n06hw5BvTCMiGgkeykDg0ttAuJtWO2JIm6py0hh823qdkfFO/IcUV8seb3cYhM+zZA1ndOhW9zBSTgAxEK6yelayXsjYsd/MuTw05fM1/p/AmY+juwqV4628rAVfMaXnbF40NWX9leEGRPwd2dWxifkRJp7wGCLqC+s6TWZekHDuA/ZdeOod8jNIzSwqlPMh4nEXAEQXEg6Lz7J9rb4x8t1r5jAebdBEowchhnmx0SyuxQYoUe6vf+gLl17FE0Avu0WOmjj5eWPP0tfJSduazkEjUnr60tEuL6NRM8/DfEu9TtqxcHCcEN6CvxTMPV1DLQDdvfkfeL6XGFzwOZEmtXMeUz6VM8Oc7ZdNIEAs74pv7lFtwG6kVAuotPkYLfjmVCf5FK4xyXhLSGgtfe36Q6CvpEDxJwQ4+sKDkwLYm1u2Hccc6LC8khbV3isM7FUl1TelWe9JKD0M8eMDBw5saPzAmankrTw/XnewcOyUjIXkxKj7IA2o+umS7T7RupGWh5uDkotzApDEQf3geLf9I9byQNjT4+C4n9MK+IHHAw0cABb0wWDhf9rU8Y1eQd3v3I0Xdo5T4+BxTGLJNN7HQn13L5gFb6P6zJCekVWIys7KCKJLMxkwl/VOANLdfMoR4DBrsl86jLF0hMa6ghfHJUOh5wuW2+FyNa1KPqWdPpVXuD4gjSIDvCt6ymxwEwsZjDsw4J78P5740yiGpSckbcOLetckWNxcDOww2Mwq8vAZLkitCqw7CbTDG2V0CCTaKgA0VAT6pvVbjwDIjJ5kH4Io9qUeEVkd/YH/TDc5W7vo12B+3SchsUze6y0Rl8m+0eIshNVSXfgGWOIx1AbIJ9xtdB+ZbYxYKDD7ST/LrM7q4rUQ+5EOgII6jY9G7zyysCxv/4qzNDCwXatB/6uXHJmVQfLwepoZW4q2BgsP/T8KU2gV53QJlW0B9nqgTVNdBBoaMizOnvrnI0Yev2NumYYRJ+XwLbTrNL/ouY0COAhRVLeeC3wYesm/WGC8Uj13f+1TAhGmojAT9o2gQpi/X0+BPMB8urWZCnVTMpJmUCDdH2eKq/HUnONZQnMiVC72shcz8kQZqKC1pHOxJw8jENahqXsMKSrSAVPNB7YBwAtvN2q3+jUQ/EC5bawhYAhFEF2Tuix5F3FER6mpiWnn+UAInP+NEC+CsL8ozdNzZjhCfb55cFPTuWumtWuezWe8KOGmmgdB7WGgK+EvYgUS3ZsFaWStQATlr5RvhrguA7XDO9VlupoyD/Nt/RQE7FzFah/M6/Kxu//ee9RT82xBH3BhuQ0YrvS7kY+2knPlOcrSzRa3WKBa+sdm9XRWI10IOBLnkoxVpk5PdQ0Iug35MWiz37st6CoQCaAxMrLrZBXDP6ZaM742AOQgpCfApCuIq5/ijElsHBCug39hUbHq58RRoYbslaU+5z/opWEBXas0EHXbo7ydlj7XFq1craWpJIJmIv5mxmoMoLt8VR8IaxiFBwPa72WEgQvesYYHhjyTKL5Ykmx0Sa4KNtyOGRjzIjA4g0Gkf+HmbG8VzsBSokF/W8RXNCq7fOv15hKdNep61Rl8nB2bwqHvj6QAgWSk0SOCgWza+LWLWBoGsF0TS3nfQbq1A+IeKrCn2AvcCjDLyCf3eB7p2iBgweGhmVQm13nUXQXPKpKcez0rGzBZsrhxSONxs6wwIu99foOZ+KspqsMV2lHJRzLxx5el9iqOEa+ALStBx/nq5tT29KX18xL3QYmAZCjxNdC5jRQVR7V61gh0FOX5UVgh3/RQYJ1LX0UHNGcqA6xUi7zp/xwQq742h6Gw8Ch4yRkcYXIaGf6nMwSiJIDSfokQ/xp2NWZSpC65Avvx3iIXf4HGLL0F1/equAXYEZtCwMwklUVn1kF38VlliyDe9kLKnZ7WL0cVk5P0bDCC2kKM3Me7du/PwWdoHOZpv69RCaAMG9hP5WhQidSDkhKtE2dswG0XgEiUkBIitTmr2l/s+zovdvJJZVUdK2UURwmvoDXrN/0BNP30HKXiuNe/TshTRBDIH+ngoZAmY1dGY2IaLHDuIh1DQFOWDY3y9fkMaMzR48E/D29jGY644Y2pSxyYfMIUNMB7N2yk2Z/vwzMhoK4kN9fq8ln45FCzYYh6ao5EklBgdM8T/scF84YRVGLJOFQ8uxe99hia3aDXFZIoMJeDAw2bsGm4yIJUV3UQoXflDckax4kqzy+Mkp9zrVX8pRLlw4iFy+zNDywPDSLb6y6AFgMxBlMrIlLuAJqx2BQnFohggv+QWj1mYn1M93N9R1HmlNNMCu7gcx64EwKl1wGVrwM7WLZEIxDblZdi6LVx2Ii7J6Q/G4mn6eCxMvgN6WWHZGObjjuiyH+wVqLnLnA9/2nbmc6mwd+i28RsFxX0nto61gs5kI+eLiv+uUERTrgjdneurZtL6fxGH59mSakGLmo2pmt1iC1JaKBFHlyTdjt2Om4LaRU0PMNkrIARRMfZGcvswPkJ9AFC7zKU3hGqBPnXdjOPLgB+m7JYxNy3Xn6Nh0YtX2eAIk06WEB4kSIX+dkXGbws/hx9zPHhYCKSKHg8BzBdnV+f0PtzguVi4cOfBLWgfBglcWp1exQtx+1lvEY3indryfwjXGVI01ftRIIUF1XiUfTwApoSbSobF0j6jkP/C3HgXtl3XZE5anutc+LASjLpbaWce+Kv3+SsSYrzSFT35aVzYCd3kCsiYEVu+xTf0esqHK+FmJ7rK1dpUObJQCBYn8SL1jGPi/NAeOqf+/A8RP08MjzzD0HXo8XsOL410+4x1PlS5YNGx/Y5z4e59FZ/ZGedMBM6x/lcyYe8zBb4rJE4VrcxD5tb2j53liqTwb0tzuGL+OljAWuzQaHWYW8UhpgQsBdDK3BBxw89IjiRTl8syAsmxE267GVPqy1gckb2TihKWSX9RAAzuMydzrMQHB/AoAUNSyZyrIIBWbD5FNNzdivPg5gKzQU9QuBa+Nw/XnX+hmMFU/EMPO3DSrbhzAfrXILS1N2rptZplOzLoa3UhBNvfOBghqMrZlaPq3EPGElcAD3GrzM1HvgyLyfN6Tv+w8UQW9sKZCTGhOMsycDZ/l6OHjipBVAf/HP+2YQ0UiW8VJzJTdGpLFOjD/yb5m9ktFOPI0ahYoqrkFyJqP7mAwIXVBDRRTvnVGfMD3D1WF9I5hptwi83ZHxpn+4srsosuVX5KG2+Nz1qxVRvU/2gUKI9ZWN892tE+bBSBesLwbSNFrScqvkkKwjiAcr7gObp2e1cwfR4gzaKLcWsoO2+1u7J0svpbVVU2YNStQ28cyCARBZJ+UABVCLsPizgJn9NisKV1NwqC0mxjZ3iPV2QzjydpU3NhnEOcWsmBX7FP03Sk9yjeaf1DSu9TSCWBYWHfMHK6XT6Bvlk4mWzT4McEQnOVTMtAYkpO3sttWcgHpEqr4+B+YFiFS8/IwOQ4vVUVoKWLImaeRpfNyN5W5PN5x65VqKYAxIvhq857KomMCgf+pgNmUAN4SIBe5PEi22oFlnD+6fNvF7MpUVf/TttHYZcJiwXQ6VdCYGpwKj46TMFas05MdiZu95mFRp19D/wPtOR/B81RhR1vVJQCx/h4MRNoQTBFYzZbHC6zjsMn6BgCHG0Qu76elPPBssXW7fK7Tg47NyR4YJZGzoYutcd5qJEu2r51UnNm9q0/3QlrwON6ETWJy5tMDSyTM666TcYG5eKVzhHhQyyHnV7aG9Cx0oXymdcAN3/+5y6VM1vssiyTK6ajxbiK2h16svIFmFGn/yJGZ/6x0JCkWMDeILhW4AoMxofsDfSAr8eSrAD4p+VNF2KditZ25V2xnyLq6Wbyj5Nb+Z529X+YjSjK8IZv2jcmSY3vRm8ut08ecAxYCU5JAZt019SasjQ+x07/nK+SW8aEndqDcm4LYwWwNAeuDmzFkjmXefSAeFAwJPfaSE6wVRMB3sh+GTKEArfFT4NpkhNLZP4Orw+icEQdoKeSaF7FAk6QL63HC5Uhy61j9DUCvxThSBumHLY3aMUgIJigQQmeXUviXPN7v/SeyJgy7BED62myRoIKj5NImhguERobvAFR/NxmHxy9Uc6NSy/edbMxJwhROVrlUCPVqPBlj+dgW6UdbZZQnEvOPentAp7MJMJgcjXGK9RSwAP1k2Wkudoc+loR//2ZfQt0nODYGuogQbyRi7JPpMg3folVOWe5B0gWSdmSnj2Y5viKM5dCO4LrOLG4R9uwGAMJjIJcuBMFm1r8vG86cBjJbgXzAvfBcFJl7glbIbEBYTSyEgPRSTEfrkEQ5fEioJEjIfR0uPVx3kFXirNFNDzByc3mshuzw6NwRkJh9MU7zsn9UzamwBts+sFEq9XPd0Ek+m1oRPGbyqd5CyM03OK0fStrCR33FQgcEWpMi9Ezaljvx0vIlEbUeHlMofXREqMc0ghNyxCTnghIJoDk4o328EvGRm/dntoixQhn5q89CkawBuGA25J55X3dRTvIHSt/dUk13KtSjBqVbBPl1+u7Qq3waXGGxDSDgHlXaOvElEJCT8FJB5IOfidI1y+6uphVdXOWIEKOobunUNs990b3HxvGR+b8oDpRpFm3Md2Kr/o2zSOw//8hMgKpzpC9OtA5iFK0o7ZNj52K4X2+sLLb8BVsnG64CLOLVlIwtCiz4MDO8iX9nA5WPvHKY1M+NbRDGSiSOAK+VP5e4d5koHAf2PXPWMLeeg5Ef/l2soSwwTdmcBijU5iR7D0R7D6RD62hJ0MGyvJ7v3Yc4kaZ7Z452cJpkpG70CDVSr3r1E9yIU6jMkKgBAPIFyHmmrGkYR66E15VyMM9UdPSCPdpuY7mZLv1sV/h4nQKuVtlIAcDIhUEAP7KCbu7mKTXkVAGrPASweFEUOtbLF2jR6t1iEDXMkF/2XduIdQ87arbNqQDqHzFaV2huWUD0BorRNhlAWE5Y/6sCfVGyXZ8RCiszqKreBno4orHgviyKeQ8PlZSUpuXRgUNSvSNW5G0EFXGWNGOwmhnBBWZ4e0czk71zc3pi/WFabfwy5QJu47y8kG1AnScz7an79HnjA4NAAdOrzK7rLlu8oQ0vhFjd/07U3ufJgtzwFFt3rXxol8YVnmfhIqZk11AV8KAZOQGVTIBG+zkVuLz0WPdClYri96Yrv67xe6VLBglO4HB1oSW6DyqGvdYHTGK8+gCVgAHvvG/WXTy0rVcsKLyM34Tmu88NMZOzw/I3ZhLsojX3IMTv8Q/lr0Wxym0lpSMK7LDGnkxJcRtXhiGZ4upC2ziSeLAFdVlCepYm7D6QTnoAR3Xpo1kAa64SV6lDM9Fe843PMX/Y0BOZ5Sasvx7SrnKrxjtuGP56AGboZGNl/WfosYgkGFR6cLkNhgE/jrui0D3+FeW4I+htqzmX17L0mYmZHhl60stKra8aR8V/bYPORMaubw94xs6UYKD4gPO5+hPQAHosUUzSAV8Va65SW6M204w7qlMc7DdfqDhzf6D3cvvzy77tShrnMpe4efqh04oB8V6p/O1/1Lql/oxq8O3oouRxdnlKQ6nV/jConLgDPUCfTLSiyzF3Ni8JbHsBhZtFu4BO+tqFsuZN7Vy3Gz4SdfyJUo5dNtFhrIFh8uuhPzv/od+0GwIe+sZwJIm4NJ+pQVx0TxIG1i6B7myPkVzL/FUJqLsaym4jfzs2ebfkfbYxEKTl8lZ7+OO7vpJP7gGjEci3O4ftoD5TEYbC2wBuVy3oUVgnlmdQdMzBodk4dohM8lVy2jDd+wJNOlt9cuWKiJFToXwbVuFf/I1DMJocNjljl3zJU4Uz7q+ehqqbcCzpLnRxxrRLvwDWt5WY1wRE3Bs6IYRW96


