Staten får hård kritik i Riksrevisionens granskning av kostnaden för investeringar i infrastruktur.
Ständiga fel i Trafikverket kostnadsberäkningar
Förbättringsarbete
Trafikverket underskattar systematiskt kostnaderna för ny infrastruktur och arbetar inte heller med att kartlägga och förebygga kostnadsökningarna. Det visar en ny granskning av Riksrevisionen.

Trots att kostnadsökningarna är mycket stora omprövar regeringen sällan sina investeringsbeslut, och varken regeringen eller Trafikverket informerar om hur mycket kostnaderna förändras. Bild Adobe Stock.
Någonting är fel
Du är inloggad som prenumerant hos förlaget Pauser Media, men nånting är fel. På din profilsida ser du vilka av våra produkter som du har tillgång till. Skulle uppgifterna inte stämma på din profilsida – vänligen kontakta vår kundtjänst.
Kvalitetsmagasinet premium
Läs vidare – starta din prenumeration
Redan prenumerant? Logga in och läs vidare.
Enligt rapporten underskattar Trafikverket kostnaderna systematiskt och informerar inte heller uppdragsgivaren regeringen om felberäkningarna. Regeringen å sin sida omprövar mycket sällan sina investeringsbeslut trots att kostnadskalkylerna inte håller.
tKgPTw+eLvq2lpSvbe2mVLkDO5CJ+xouVEiFmvyRFbfEIwIWNyjuMhvmQuXn0Bk3kPlX8MIrr4UlFb9xNgfw+GmZltxD/i/Lz9leU5wQwcqiCEQ0tiep775pf2wcDbvXfvUFMV4yGDJcuZt6EBH9/ZFaue/jrf760zsEHYQSDRPhl+MqoKJUHYdPMHe6yy9ab8H78cCyL6fILUuCOE+CXr6cFrmEYTuseOoSw1LMK2ElQjrqb0F9o3FmRfhNdwkgHwQB1TeNIeL3PAOUnx05WtZ7geTHO9NuwiZi0jn1PX00H0ETwWj76ly6jR+hUHR1JzvG/t8LHU2fOoi33bbq0ZEPIf3qp7hkdX5vU2rZxuN57IdjcUHCiTqOFGEfJqxzvILoEhwhP2MRhwjS10rdawgE6yIDdK/mlxInSL/ERPp3ynY4PeMfFykliM+HZcvtfi4pyHwgc0WKO3S7jNv3ObXog6cOahnLcA88l7w7BCt8VfEQ24BSeTW/whkM3cfbHaEc5zgw+r/zYQDyrusWgP/W8dnwibZNmmuNqZeqja0ykD7yM9WS04keP7+knNAuKhJ71Ii1YlRcE1zHcCOngAZRP7GWCYpPw69qTsGcLmILyQIdQPSkPrybvBqRh2+Z4wZHBTS05Jz2x72ZdkDyuqqwagMjVs/smDPb/Y1QO7uXIkyjwg0LUZlaC2iXUUDrqcsswJmAR0CWJ5FCQKSsDbso5/zDnxGix38d5djvQEL2/e0E3aOQbI6cB13DVapBqAzpb7YzNHvBg7Ch3cLi2jxaDpvcwsjWMSTt6NcMLWFVCbsourviM40Emp2+oTuIXYyPlzRp96vRSxDdAJVRlvpKPmwLcep038/9goRtyvlaDTg9J4DsxKamoQKhB6Rqf9fIkddoyCAP8aAy2e43upmuo40gDRzK5W+QMyk1oqR8vUlIqnXh9LBEi2bygj9V8j3XekVPRh4KP8SpjDuFTmOMzV2KGh9JkCwakRpWFioJBi8ugPcjwiouLCrtAazJQpt70/eyOW/LosgbcePhxYKsOTkfVOAfwU4XXtHPomg7/6ABFH82NHYKs3CZGQn6tM2x4pkKWqGblFVriD8a5SA9N/b2KG08fqOGkpkdtYnV7VsSkNRQRBP2y+1sBB/x90SeN/zorNK9sfVu2+R+3eHzrh54isanlLHx5JJixRLX2tVWObFWLQTaFHonwx6N3UJN/r2zKhjqtsph/YBAEAkqQSmKtpdL9jBelCwSPX3bLE3+kjsMSzzhyAaFkqlP0tbsju1Uhiqh3G5kqydhiNTp8LPcXWpUxW37woBr33+ffvt1oGrj8MXlR8HOluOfDJwsSvFNg+G0zfZHlVKPtz9m+dNgzGO2zNsD1bBCaCL7At3yAEbxot30cJmTPKG2jhEtmySfz3T1koS1BgtNQosT8ZphuWi0VnR15jTY/MF9bPFiyfH9CGmJrGRWKmhaa7wa5BU8nh3HDHyrlwjSwYKo5lI0f0qgZsKX5dDzvs9b4St5Cb7omT0uJ+rE+NBvF81oR+6reDRVm/dp9hcK7jASUiflWSGrjCKvaHszHeSlmtHGKinhfxwDPnfjbvVB3Wcenr15ourU7hw/n0Pz7T07epyQntDzFnPDMAbuNKsk1fW17tcUvxipV1HvrfMCXo1q+patjAf91mfnxXMxHbtvhYgIgUQm1hXbLCbpHNrGHRiL9iIncdsAaxXIneuGZtR0M+ohQDlQMV/KCqaI/3fxIKhy7BDK04sqzfXOvfLdFTg54tYxoPzn//18BrJsxlCD57rbEYyGDf4DOhw4tOcsMl3nORU+HVnt/0+DMwrMWgvi29ttIpQAZKcZb7gNtxhDwMeuWx0ElopgHZarCpqdrFvqnraBQKQ1+bnTPz4UHIVpNZFluiLA8kbfhCDbjhrI/yEOc0r2r8u+G/axJCrPEMuIR75PqQ/hxIPce+GU/AQJmJVynAOTMvH8CnvMBNvSV+303TE3Z9VJ+toJFhlDuSUC/WDsGMSw6JKyE7Pd43pkEUmoYqZUk7nJD1i3TYt2k20R0BO4XwSU3LnAERCpAR5O9/kwmgNqZNasMyOjQAWZs34J4CMKFhUCmcmM7/cRkV++LSGPLwt9pHdmIzPYIGqJ02CC6g3e3zQIoW1SF0xFYp6FvkQqUdVEJIEbwLRD+D455LfWWfV7TR+3e9MVksZmdsD247IbyWNxAkIgeZ4PjJStht8mW93gvlVYJK/AtvwotIntg/ffw18Z3FAIYZx3QTq0hYUaWD1p4WVXFOlIVoeQnamVflWT8y7lT+x9CFTWyhPd85/I3d++Sds91sZ0PDjKml+z8D3sQfes4fxuaLFS3ha9vaWMMmbYw0lIuRoUXp2guZsAgbZVyg+P8SilQ8pyJGaZ3f/yO/1w/UeRWHlf0B/NHhYNY6HjiNeIRI+rnbnZWwWNl0xyLgEPsNzF9552Xrfm6iDYCXmyvZzvyQCaBOaC1r9h58Sfqw3yhKUZIJqBM5kdMXS5qOPHoYHdZYnfT9Tvo+SjxTyEqdajLCXZqkuOdsU1Aa77IxlD6D0bEEsG53hGmC0i8sVLrTYNP/rF0CUOz/pMHkde9INwGCT1vdoDwfwmf/MGSkobWL80hbwJjuMZzMGznbZzudPdysLnXNiJjg3LnyF5MwVHHm+wWCRTdZP4QUYg7l9SCMzN2Q8RENqzzSvB850nzWg51GYZvbr2x5U9Nkaah9PgF2Ub+YXoH5NIxGOfjHcMnq+bHY+QGOMWtaNRgtNjhZFRNWfuWq4HqXRp/UP+dAu9s0HkAU7509bFRgLGSD5ccKdOfY3hJE/qfnUypQ5yDs4Cj2CMlGK5U2vnGDtbWu3J8eiXVNradRcA8hAbxONXOMKZUdi09277njhGgdIa0SL5NRnDZuDktiBt+B6MvnGQLVcYFF0oe0iPAK0Dt0oZ5udX7j6rb8wEi2xHUacnUGBxuOgqw4uwqLElorgFYs0qtskQzDbwXYulCYmThNfM5s9jiFxHY/8g2hTk0C7B4zEbW+uoHn5dRsNqXDs2BYhdPS6SWZsFPSjITfVRNkTYXSMteCmtA+9w3TqYMg7n3CMPusynV44GZ5Bfznp0FPffO9BlxRXE4299rGgZREx302of1IUU/rAJ1DYJdrEZh1TAngjetVSMsK9FH6ti9NLkV/IZzoTVjxFhoWHETjwW40Y4gF0BJuNzF1Sh1/7JonxQnQFJQKrLRg8P9AuciUpnqnC31yyZJ4Wkq7zpPi3fe3AGPDt3vCjnRYUEk9R1YSGrv5Nh4FkRbiOMIqU1zrJL8a1/FRBeN8936cwtNst6/7WV5iqknyxWoojXFLqXK3vGVYxC5nPEvg/ynokEzJK/DuLjs7+fzBVhwbWgiB8mtK5YQ/taZtcUAZXwYb9nmTGE3XH8JnKhVnLd1Pms6Dw9WNVQPKV1J9u3jlnsgfTyqSPatZd/3BHhhJ2lOd/pXtLEjYCnN4aFqLyfj7uxOdKGeLmSHZIuCdXGyMjnWxNE+d8L3JCtrsBQN2Q8/SCKBkms1SnMNfOPrNY1lBqorQ+0I6KNVgvtAQ8DB6ZwUmz7tCoI0mFpZ1J0xRvDC4yFmT2oBgJdodfJ9rlzOXl9+KCV4GuqO6dE8k7l84U+JgZ2+ha8Y2liWrMSbBKn54gwQ/B/sqStMjFnWtJqlXNzc6Jgs3oKt1ldN+/qrcFRBmN9rB/IXkmYFMRdKZzMye5njm1gkbg5WDnMNvRPztynUvKwwhlOUk5V8IKFAfY4Jdv/edfWU8r1Yjtr0jkWe81HemwHNZl2id08F2zWiCkHpifrTE80TN6j07D3UR2O/qn5yNmKGPUeMUXNMf4m8oDFXGI4x60euTADi5qNqVnZ/rbQ6HNv4QdyFSvGFmm/U/WEGRe42q1gAR9Cu0NlJr1BT98MwBkhK1OEGqbaLP2q5zuBGc9c7f3jH3bAXZgKPe0ir44nZrqie6saoUfmunwAkpIRvizpp6q7NZOPPDDsVcwVeWzCV2ngBMPbqP0vm6HiRtom44S1Awm+VaFejndfEq1pT0qjryTk/gZzu/Amjs4V7dgQgaP4zvUwpLq70asFfQw04G53bUM+tUBI2ppztIKw08AYrOiaVaen64+gnWP4v3JJj4ohQvfiR9Z100SLqhuAGDsj4puJscJhuJQlNvq/LKgjQ63AfKZtEzm0h59jEZhQXJQebQZPumMnhvTOg95BzOHX5BbRP7k/MQJsiaCNElV4PtvxzgstbiFkVSx364y/mjk1vpYsLkN+GncOfblpvIlk3ydysfNU6rCFrR4BHrkgQ6Y+GJAjPtpE2ja4lpjZvRR2ZgqCwypCoqyYRDPcdwS3jwfv+XxWh9/m1pJKzGSF/SAJQdzRIECqpMSHkrLezVWLU5rdNo9pirYlpsmrx5pKT2SGJilw3GjFAeOXfM6GID5dGAEkorP6dbatVys0SZMMH6MWmfkBiXgIEPJ4cFVRjpr7Y+qXhr6uk/WoC6T1y6oPwsmYeJwrHj0b1mrIppU9L2f6JIeEcxI6FTaqXysXJWPydWlQAVqPRRy0KVjX8AS3hLCTCtI6xonmTCMW//+NjYLoGoZ34FfXy7JOyBO90Kkrucnj4C3q1B0rOXdav+8o0KI9764gTwa9EH3Ig+9s12/cvYTZrq8li5hKxanFmQP0xwG6QfUYcD0Ccr0YnUrGFaWWwQMiJOrG+Ruabc8pFYJI+Wx/hnl7SiYR+Y1FEyzmqwBuyG95qgI3ao+7ZwKE00Sei1iXRzXKBKEP4iwYtXmMoJ5x2btIvHoDv0dUQsoDxuamKmetFqdzDO5A3EcZQ5wxquT2Ofoo4BY4zGdnH9xBnJyge8xWi3nooRWPBdW9f9P+zUKbPF8GtXKTnJXNd0jc2vlQSozfVxhVD+b67OjtjQJiIm7MVQWJNwUfmquCh4Gu7+Oyk8tIFqeTotuFMGr8lxhJH8woJ/i2B/7eh33CQizxDT7X4Lv6tET/JYm/a59M/h72W0/7CMA9M4S7POucHRwiEztT8UlvQSHaPCiB3BH+fugERnHqsLES5zphsXrJATvUAwWV6vZwrDZ0ZKtKHXp2qwD7cAA4BbKs+jCC+6mPXEvL3VLzndJ4nR0SJQhRpdlMjEKLYO+SYnm+rAFtfP93kZVIfghPWS417P4akjPT2p0INSH6+0VTTzcnAykltdIYs4kGjUnVyos554hD3kmFJcLRXrE4RdD3a9Sxd1wG+gtwSYvZmGFGHlUzX/Ay4OT6ukIyjK2XZBJDYBDoRsZV/r+TFvepjY9GUBUjrFatqgrbIWaD9mPk4fg2fAqGWfPZ8pCExtem5yZwp1xn/br7CFJZvcgv636ce2cKnt7smZLl6eQCkY95y/IRmLVSsYJNvgPA6Hwl31QKqKeU+UPbxIvkq7n/p93h8fXGB3BrAwYO3rbMnTQurh+wVNqWLc0Ujk5Oy6kDVFjvSP8dDMO4PhEBfVPjHr50c3VR9CIgoaOfcaGf5DSTqcQUqdLm7hjYa24V81fqD1G9d0StO1ld5Rn37Ogv2cPW1+QOxujmmN/NbO/8BQ9heBCMZk0u+ZxGFiVX/EBhQtYjnpfodEq/iQjEUZhiUPVSH13l/GDHZzwoJme2NP7NjB1M8ZrAKOJYI37B29tq7XLXc+HiIFNmwZMpzLbnTJwYrCj6+hCSKWaIn6Hxuza1i5LMcZ4m6bOt0DeZDOWn5m29/t+0TJ8ub8qiLNV8JD8iLJr07QjMdGTOqCAWnK04wqB+lKAqFk3RFwKcBjtzNY11PhScGSWc3v1YAgnWJEns6jPfT95N6NAVJ73dWUFk7c63wgic5rhW4hu5WRmq7pI/reI1XF8YlSpJoLm+7BdmDRWNqsJsY69Vu+rMpegLi2FjKTwlvLyrXDVl9gk21j3mHMmRs8oZy+hK7D3kk+yXY3GTs58vj7nRrwEByNhHTbt7qZfejlhicDbYexCP5nc+VFPvh6COFuy2zdQLrcjz9YQn03dq1rcEwGSXVyKQsvBGH8gKx/oJ+H6hdhA7GthucUDBb5WIqM3eCnesWKSGJhMqDva5TKyNr3wdF43NGJLPQjgbpoKd1qJLRj+tinwI56DccJr6VQSzlKTQbRMOINURJpv3G5YxE+x4e3RHiaDM9YU3HwYE3Y4vbvX9Sa+2vtLaYsCemT6KQjivJJTMrAf2rjJJjU/CNOp7HGhuBgCWVtQ1azXcMWGfCCWeie308IlyiJ0n2aGCdEBAMpUn4E3PcN9ht2zuegORM9P2HtIwFzNQyCE9Ox8PzdgOHMvMgmcvO0B4/+XRoVOrvquFrLARFlVtrtSuxayl6wX1VaHB/zUsGOzV9HYItiYNFVLq38TsQp8b0yM1EUGA4iXHxmL3MV5TcR/3TYNARU+UfFlC4idLQF3UgoktKZaV4J39i3GZm+9CUtNl1bkgUQ6ie20Nj+b3mz9ci2zv61LKUY9ej5/8K1rJaTl8zEei/cw0Qh4zJnzQXA1WnMvo6+k96m+UoEUaxWSG00Fg6gZbOw87lLOy9QCewf5ZqV0at24kQKI5e/FEpRVEyNFmkRMsjRPxu6zY0ln4tZM1ctHJTezOT/9OrtZCuuolBtbT2TysZlfeRLgNPGsDBCR/JKuOYc2J9atM8eylglfQaKqnwdYA/HEf1oUvNJVbQ/cQ9ue9B3wWhX/6aEwCALJefvhEETugqXIdoN5i7MhHgM1QEqHRM4TPR5VfMfZ89ip1DAuTwiqMT+GUeIpLAwDRUg1EvYbl25s0g5O8Q9spqtNvu1HLI9XpCnmHOMb/UW/pwBZvg3WyuDVc0oF3bpJ4p2NAiLh4fER4QwWVbH6Wkjd+sEsjLpjFW3aOPy3EuXG1MEez8Jy6GjOMD0+/tqiAZVr2Km7PFxJxxZkypyFkHpXvTR+Em0EEdQ2qeY3Z3EWul9J/7ydkucjolowAhJilhSsdCB3S+1P312+eeCyNuK+e8A78u8tJckI4t2iSX+a7evq0dUBWsdEgdOGT0StePqIqO18BT8fAPNpW7BebXR4aSsFRPBdZbbJGnHFsxIfrhRD4kRRr95SFhGCQgPTaX6qNEH11x9mMyEureLNBq3pKMyIIVul0FAfG93edzRrPd2WTM055vyvV0luCVv+QdAEstxH25XCWUPme6f9yJKn/EGUJ/7ldSmepzlEtYP8xs7SUE3aiRtidxD7ltYLxCecr+2L/+JLCyZ/8yW6GVQj0/xw7NeSZ2DLESj0s1zpiIwsrZJr+LL1/RiKWHTlGU6+/7YpwDxboze5jIsb/v4DQcEMP7aHpWWonmsZt9Djm6ObrmgqQmMxZoyM2Z8UcX7Yhysacab9F4XzmObRkBCrg9CUorvKOY92it/rSN/0BAk+LYZL2E8MrxBxnWM/p0AmufELEEE62agdvSNyj4Lx1K4GfptSBz28DPiuaPMkqs1whg9AOO6BSo+8zqnhLBZ4AxFcTAaO8r+tzDL1X6SRm0u/6hp+jW3b+3293yh0HeuDmkZRlBIYFIwHxgQyHv7QYAcQs9hPdk2Thq/TVGkujUJapAp3ByZFjwcwaJh1yBDzdTyhwsyD26NNunQhAZlvjf1SGSswzKO/YF8pF2joc9Qmip00fzxQzIkFnrLys5govebIKUhQ3Jwz4lRal/lfbQMUAlFsFEJ9QePO+HmtZNxo3sABxAK7cMeTdyfgmRWiHtMqzzVgrQChIzKeZ9ximq1ur2YhtAiZSyfqpbcF1ItvNReBbcWU6wAB3ZLz71dQ8UvJtkEjhXzlW1xe8cumFjeFsKCeHUFCdRpbs/69j4ygNI5VgwJ1zPiCAHVywOffTYVrrLheSvQRr5jSIZxkZXde4am+ElsalD5xA/s7yUEpywpHC+vNwMp6l0A3wHlLe/3J77IcFIP8QZIWGVbuF0J2QC2gOSGezFBFjvnWicG7ZojpNX4xtqGM0/Vy//Q1L877L6JtB/BzxvGW5Zl12SxNatbd5OVCpk5yyE/6cxDblb34mR/kFknD8imQxSF2mSJr77FN3eNpGDeSfxcePM6IQUF1sfHprq/8F10dF6SNPAnd/wsSTnvxQPtLUqaIHfQafEsAxyJlktWhRl3efSnv+HvmLkaVUzK8O5B3Jrw7fqU1IjMExbmA2Q1lRwRUtlYPPTwNMoPZPo46HEYKFhnXF4W55+2e5oy9Z3nOOAZkK9cMi+37ccELzBVy8ewgYUJPPi3o+Ra6gS9nf2dxYWK2XFbUEMeXk9mJ70fIADoJmkpIKGwLcvV7seugsSIZO6tjLWEy9FbfeYued7SqCtKXpfMJlqDhKkxgFATHACzRFjmBvoj4wiPJ80AjaMYBvE9xAu7iYSYxjc8PzbWDM801nqpxJxJsjbPoisZ44cxbVW8g4FKpu4Jjgej0mg5BOIaRG+9C89D26lLB8u4NpeLzkFSvuWSoWp242Zig5AzjfhMUcjHe0k2ErEb0rxXIls32afEAYfASCJpl6/aCUc0uxjwI8lqJG7U8UZ4+OoG8xv53SmfX87SpOkfgODScpR5DNNBo3TSJ9vbnoHyyTnjThLLKRgsBDMLF/Juyad/wZgx/+6GnoqEZBuLCpaKMuvzeUvpYqx3WRoFsfFFDuWof0sC9ty1Y1NHCkCMjvMdy5kT74kjg4Wd2SBW+/hi7NTMlCGxuah9HlydNslrlRkdla3iHGJ08ipkEsSvnVC6vB8joKOvgjk04xXXv0l1udmP/xQuz59jmv8UgRxcc90I3cnGIpSjDhQMvV56KPSHXO9Hp8zOmXc8UqyQU9Kohowmz9/Fl8O4UYt48TGErv7I30HUIZI5yr+KOEiD3UKgX2vbrJqi8k42tz06AjQO5ZfDJZESHKXo1DzTGbulxb5+sddwpV1uHfrtS75r7pCCoNb32rfnvMRA4jk1F7moRPNphTXdEDYCLw2c3T9ve4g6PwTxkzRRpLlQJ0xFP8fRR5f3FmQVEYOsxAuHUZUGAz48V/djGfphvtIZ/Cm43rIgorkgdSejKqwMEfn9wCDAjGV/DurKjoPopoBqZhUbjPZ4B/cRI=


